115 research outputs found

    Nonholonomic Motion Planning Strategy for Underactuated Manipulator

    Get PDF
    This paper develops nonholonomic motion planning strategy for three-joint underactuated manipulator, which uses only two actuators and can be converted into chained form. Since the manipulator was designed focusing on the control simplicity, there are several issues for motion planning, mainly including transformation singularity, path estimation, and trajectory robustness in the presence of initial errors, which need to be considered. Although many existing motion planning control laws for chained form system can be directly applied to the manipulator and steer it to desired configuration, coordinate transformation singularities often happen. We propose two mathematical techniques to avoid the transformation singularities. Then, two evaluation indicators are defined and used to estimate control precision and linear approximation capability. In the end, the initial error sensitivity matrix is introduced to describe the interference sensitivity, which is called robustness. The simulation and experimental results show that an efficient and robust resultant path of three-joint underactuated manipulator can be successfully obtained by use of the motion planning strategy we presented

    Development of chip size monitoring system in deep-hole machining

    Get PDF
    This investigation concerns with the metal chip size monitoring method in deep-hole machining process. Monitoring and control of the chip size and shape is very important in deep-hole machining because a visual monitoring is obstructed by hidden chip passages. Yet, for the process, any chip size which may result in passages clogging will result in a failure of machining process. In this manufacturing process monitoring system, the three principal components for chip status monitoring have been investigated: the sensing chip concentration, the signal processing, and the classification (decision making). A new sensing system and monitoring method have been investigated and proposed for use. An inductive proximity sensor was selected and used for data acquisition (sensing), and a personal computer utilized for signal processing. As a monitoring method, the expert system of deep-hole machining control has been suggested for decision making based on the sensing system signal. The experimental testing has revealed that the sensing system signal is strong enough to be used for the machine tool control

    Nanopencil as a wear-tolerant probe for ultrahigh density data storage

    Get PDF
    A dielectric-sheathed carbon nanotube probe, resembling a “nanopencil,” has been fabricated by conformal deposition of silicon-oxide on a carbon nanotube and subsequent “sharpening” to expose its tip. The high aspect-ratio nanopencil probe takes advantage of the small nanotube electrode size, while avoiding bending and buckling issues encountered with naked or polymer-coated carbon nanotube probes. Since the effective electrode diameter of the probe would not change even after significant wear, it is capable of long-lasting read/write operations in contact mode with a bit size of several nanometers

    Fully inverted single-digit nanometer domains in ferroelectric films

    Get PDF
    Achieving stable single-digit nanometer inverted domains in ferroelectric thin films is a fundamental issue that has remained a bottleneck for the development of ultrahigh density (>1 Tbit/in.^2) probe-based memory devices using ferroelectric media. Here, we demonstrate that such domains remain stable only if they are fully inverted through the entire ferroelectric film thickness, which is dependent on a critical ratio of electrode size to the film thickness. This understanding enables the formation of stable domains as small as 4 nm in diameter, corresponding to 10 unit cells in size. Such domain size corresponds to 40 Tbit/in.^2 data storage densitie

    Metal-catalyzed crystallization of amorphous carbon to graphene

    Get PDF
    Metal-catalyzed crystallization of amorphous carbon to graphene by thermal annealing is demonstrated. In this "limited source" process scheme, the thickness of the precipitated graphene is directly controlled by the thickness of the initial amorphous carbon layer. This is in contrast to chemical vapor deposition processes, where the carbon source is virtually unlimited and controlling the number of graphene layers depends on the tight control over a number of deposition parameters. Based on the Raman analysis, the quality of graphene is comparable to other synthesis methods found in the literature, such as chemical vapor deposition. The ability to synthesize graphene sheets with tunable thickness over large areas presents an important progress toward their eventual integration for various technological applications.open826
    corecore